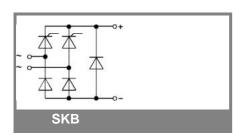
SKB 33

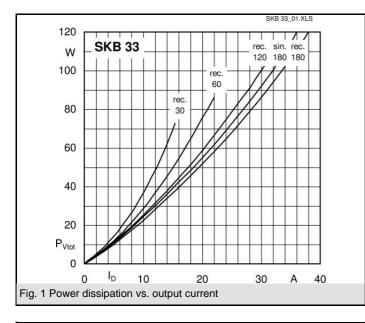
Controllable Bridge Rectifiers

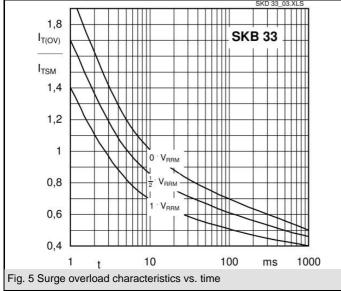
SKB 33

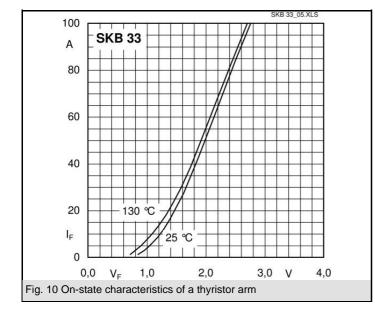
Features

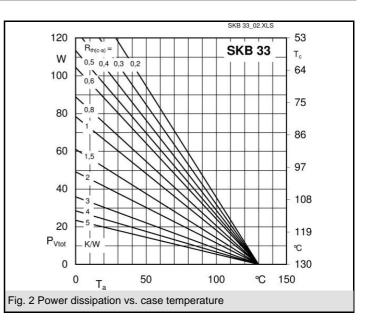

- Half controlled, single phase rectifier with freewheeling diode
- Isolated metal case with screw • terminals
- Blocking voltage up to 1200 V
- High surge currentsEasy chassis mounting

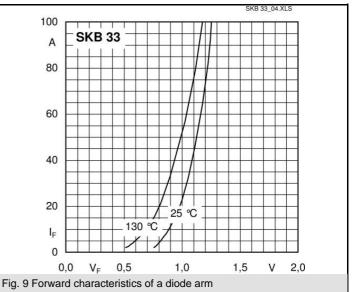
Typical Applications

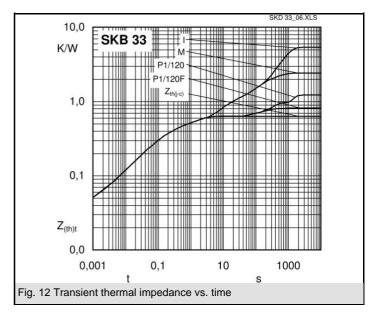

- Power supplies for electronic equipment
- DC motors
- Field rectifiers for DC motors
- Battery charger rectifiers
- 1) Freely suspended or mounted on an insulator
- 2) Mounted on a painted metal sheet of min. 250 x 250 x 1 mm

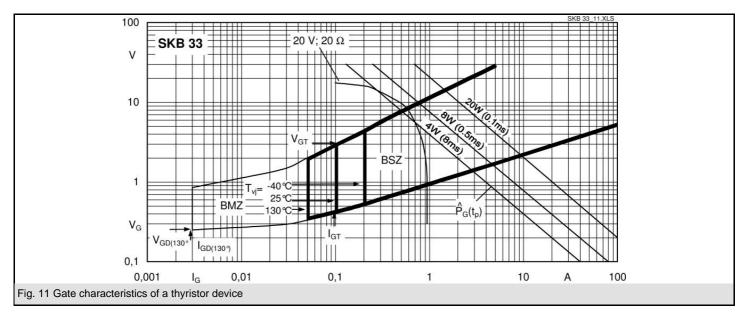

V _{RSM}	V _{RRM} , V _{DRM}	I _D = 33 A (full conduction)
V	V	(T _c = 62 °C)
300	200	SKB 33/02
500	400	SKB 33/04
700	600	SKB 33/06
900	800	SKB 33/08
1100	1000	SKB 33/10
1300	1200	SKB 33/12

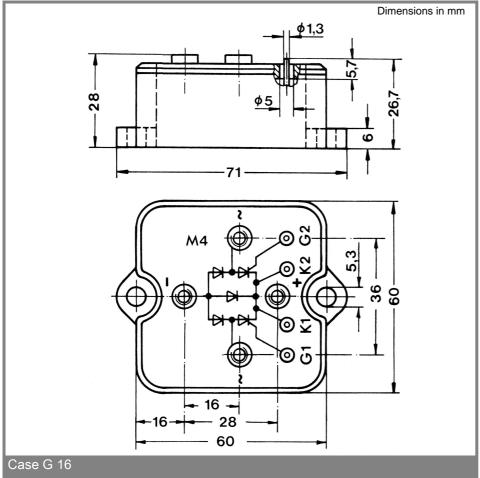

Symbol	Conditions	Values	Units
I _D	T _a = 45 °C	6,5	A
	isolated ¹⁾		
	T _a = 45 °C; chassis ²⁾	14	A
	T _a = 45 °C; P1A/120	24	A
	T _a = 35 °C; P1A/120 F	32	А
I _{TSM} , I _{FSM}	T _{vi} = 25 °C; 10 ms	370	A
	T _{vi} = 130 °C; 10 ms	340	А
i²t	T _{vj} = 25 °C; 8,3 10 ms	680	A²s
	T _{vj} = 130 °C; 8,3 10 ms	580	A²s
V _T	T _{vi} = 25 °C; I _T =75 A	max. 2,4	V
V _{T(TO)}	T _{vi} = 130 °C;	max. 1	V
r _T	T _{vi} = 130 °C	max. 15	mΩ
I _{DD} ; I _{RD}	$T_{vj} = 130 \text{ °C}; V_{DD} = V_{DRM}; V_{RD} = V_{RRM}$	max. 10	mA
t _{gd}	$T_{vj} = 25 \text{ °C}; I_G = 1 \text{ A}; di_G/dt = 1 \text{ A}/\mu \text{s}$	1	μs
t _{gr}	$V_{D} = 0.67 \cdot V_{DRM}$	1	μs
(dv/dt) _{cr}	T _{vi} = 130 °C	max. 200	V/µs
(di/dt) _{cr}	T _{vj} = 130 °C; f = 50 Hz	max. 50	A/µs
t _q	T _{vj} = 130 °C; typ.	80	μs
I _H	T _{vj} = 25 °C; typ. / max.	20 / 200	mA
I _L	$T_{vj} = 25 \text{ °C}; R_G = 33 \Omega; \text{ typ. / max.}$	80 / 400	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 3	V
I _{GT}	T _{vi} = 25 °C; d.c.	min. 100	mA
V _{GD}	T _{vi} = 130 °C; d.c.	max. 0,25	V
I _{GD}	T _{vj} = 130 °C; d.c.	max. 3	mA
R _{th(j-c)}	per thyristor / diode	2,6	K/W
	total	0,65	K/W
R _{th(c-s)}	total	0,06	K/W
T _{vi}		- 40 + 130	°C
T _{stg}		- 55 + 150	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3000 (2500)	V
visol M _s	to heatsink	5 ± 15 %	Nm
M _s M _t	to terminals	3 ± 15 %	Nm
m		250	g
	-	G 16	




SKB 33







SKB 33

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.